Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping Zhong,* Zhiping Yang, \ddagger Qian Shi, Maolin Hu, Shuyan Li and Riyuan Tang

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China
\# Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou,
People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.069$
$w R$ factor $=0.204$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-furyl)methyleneamino]-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$, is a tricyclic imide with an overall U-shape. There are $\pi-\pi$ interactions between the pyrazole and furyl rings.

Comment

The title compound, (I), is an important starting material for the synthesis of 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoro-methyl)phenyl]- 4-(trifluoromethyl)thiopyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole, which are all good insecticides (Hatton et al., 1993).

(I)

The structure of (I) is shown in Fig. 1, with the atomnumbering scheme. The molecule contains three planar moieties, forming an overall U-shape. The dihedral angles between the pyrazole and the furyl and benzene rings are

Figure 1
The structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Received 28 February 2005
Accepted 11 August 2005
Online 17 August 2005

Figure 2
The packing of (I), viewed down the b axis.
19.8 (2) and $67.9(1)^{\circ}$, respectively. The plane-to-plane separation of 3.8411 (1) \AA between the furyl and pyrazole rings indicates the presence of a weak $\pi-\pi$ interaction. In the crystal structure, the molecules are stacked along the b axis, as shown in Fig. 2.

Experimental

Following the method of Hatton et al. (1993), reaction of 2,6-dichloro-4-(trifluoromethyl)amine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 2-furanal to give (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (m.p. $449-451 \mathrm{~K}$). IR (KBr, v $\left.\mathrm{cm}^{-1}\right): 3129,2240,1611,1558,1395,1310,1133,873,818 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.81(s, 1 \mathrm{H}), 8.12(s, 2 \mathrm{H}), 7.83(s, 1 \mathrm{H}), 7.24(m, 2 \mathrm{H}), 6.69$ $(m, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 154.2$ (1C), 153.3 (1C), 152.1 (1C), 149.2 (1C), $136.6(1 \mathrm{C}), 134.4(q, J=34.3 \mathrm{~Hz}, 1 \mathrm{C}), 128.2$ (1C), 127.05 (1C), 127.01 (1C), 126.95 (1C), 126.91 (1C), 123.3 ($q, J=271.6 \mathrm{~Hz}, 1 \mathrm{C})$, 122.0 (1C), 114.2 (1C), 114.0 (1C), 98.4 (1C).

Crystal data

[^0]
Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.854, T_{\text {max }}=0.885$
8571 measured reflections

> 3013 independent reflections
> 2571 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.2^{\circ}$
> $h=-13 \rightarrow 14$
> $k=-8 \rightarrow 6$
> $l=-24 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.204$
$S=1.05$
3013 reflections
235 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1164 P)^{2}\right. \\
& \quad+2.0094 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.12 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Cl1-C4	$1.724(4)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.273(4)$
$\mathrm{F} 1-\mathrm{C} 1$	$1.271(9)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.382(4)$
$\mathrm{O} 1-\mathrm{C} 16$	$1.352(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.389(5)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.362(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.374(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.348(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.350(5)$
N1-C11	$1.374(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.403(5)$
N2-C9	$1.337(5)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.340(6)$
N3-C8	$1.147(5)$		
$\mathrm{C} 16-\mathrm{O} 1-\mathrm{C} 13$	$106.2(3)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$104.9(3)$
N2-N1-C11	$113.0(3)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$105.7(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$103.2(3)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 1$	$109.3(3)$
$\mathrm{F} 3-\mathrm{C} 1-\mathrm{F} 2$	$111.0(7)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$107.6(3)$
N3-C8-C9	$179.1(5)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$	$105.6(3)$
N2-C9-C10	$113.1(3)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{O} 1$	$111.4(3)$

All H atom were initially observed in a difference Fourier map and were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.22_{\text {eq }}(\mathrm{C})$. The low $U_{\text {eq }}$ value of atom C 1 compared with its neighbours may be attributed to the three possibly disordered F atoms. The highest peak is located $1.27 \AA$ from atoms C 1 and F .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Nature Science Foundation of China (No. 20272043) and the Nature Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS, SHELXL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$
 $M_{r}=399.16$
 Monoclinic, $P 2_{1 / n} / n$
 $a=11.8828$ (9) A
 $b=6.7072$ (5) \AA
 $c=21.1191$ (16) \AA
 $\beta=92.084(1)^{\circ}$
 $V=1682.1(2) \AA^{3}$
 $Z=4$

