# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ping Zhong,\* Zhiping Yang,‡ Qian Shi, Maolin Hu, Shuyan Li and Riyuan Tang

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

#### Key indicators

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.005 Å R factor = 0.069 wR factor = 0.204 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-furyl)methyleneamino]-1*H*-pyrazole-3-carbonitrile

The title compound,  $C_{16}H_7Cl_2F_3N_4O$ , is a tricyclic imide with an overall U-shape. There are  $\pi - \pi$  interactions between the pyrazole and furyl rings.

## Comment

The title compound, (I), is an important starting material for the synthesis of 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]- 4-(trifluoromethyl)thiopyrazole, 5-amino-3cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole, which are all good insecticides (Hatton *et al.*, 1993).



The structure of (I) is shown in Fig. 1, with the atomnumbering scheme. The molecule contains three planar moieties, forming an overall U-shape. The dihedral angles between the pyrazole and the furyl and benzene rings are



#### Figure 1

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Received 28 February 2005 Accepted 11 August 2005 Online 17 August 2005

3013 independent reflections 2571 reflections with  $I > 2\sigma(I)$ 

 $\begin{aligned} R_{\text{int}} &= 0.019\\ \theta_{\text{max}} &= 25.2^{\circ}\\ h &= -13 \rightarrow 14\\ k &= -8 \rightarrow 6\\ l &= -24 \rightarrow 25 \end{aligned}$ 



**Figure 2** The packing of (I), viewed down the b axis.

19.8 (2) and 67.9 (1)°, respectively. The plane-to-plane separation of 3.8411 (1) Å between the furyl and pyrazole rings indicates the presence of a weak  $\pi$ - $\pi$  interaction. In the crystal structure, the molecules are stacked along the *b* axis, as shown in Fig. 2.

## Experimental

Following the method of Hatton *et al.* (1993), reaction of 2,6-dichloro-4-(trifluoromethyl)amine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 2-furanal to give (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (m.p. 449–451 K). IR (KBr,  $\nu$ cm<sup>-1</sup>): 3129, 2240, 1611, 1558, 1395, 1310, 1133, 873, 818; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.81 (*s*, 1H), 8.12 (*s*, 2H), 7.83 (*s*, 1H), 7.24 (*m*, 2H), 6.69 (*m*, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 154.2 (1C), 153.3 (1C), 152.1 (1C), 149.2 (1C), 136.6 (1C), 134.4 (*q*, *J* = 34.3 Hz, 1C), 128.2 (1C), 127.05 (1C), 127.01 (1C), 126.95 (1C), 126.91 (1C), 123.3 (*q*, *J* = 271.6 Hz, 1C), 122.0 (1C), 114.2 (1C), 114.0 (1C), 98.4 (1C).

### Crystal data

| $C_{16}H_7Cl_2F_3N_4O$         |
|--------------------------------|
| $M_r = 399.16$                 |
| Monoclinic, $P2_1/n$           |
| a = 11.8828 (9)  Å             |
| b = 6.7072 (5)  Å              |
| c = 21.1191 (16)  Å            |
| $\beta = 92.084 \ (1)^{\circ}$ |
| $V = 1682.1 (2) \text{ Å}^3$   |
| Z = 4                          |

D<sub>x</sub> = 1.576 Mg m<sup>-3</sup> Mo Kα radiation Cell parameters from 3298 reflections  $\theta$  = 3.2–25.0°  $\mu$  = 0.43 mm<sup>-1</sup> T = 298 (2) K Block, colorless 0.38 × 0.31 × 0.29 mm

#### Data collection

| Bruker APEX area-detector              |
|----------------------------------------|
| diffractometer                         |
| $\varphi$ and $\omega$ scans           |
| Absorption correction: multi-scan      |
| (SADABS; Bruker, 2002)                 |
| $T_{\min} = 0.854, \ T_{\max} = 0.885$ |
| 8571 measured reflections              |
| Refinement                             |
| Refinement on $F^2$                    |

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.1164P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.069$ | + 2.0094P]                                                 |
| $wR(F^2) = 0.204$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 3013 reflections                | $\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$  |
| 235 parameters                  | $\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |

| Table 1  |           |            |     |     |
|----------|-----------|------------|-----|-----|
| Selected | geometric | parameters | (Å, | °). |

| Cl1-C4     | 1.724 (4) | N4-C12      | 1.273 (4) |
|------------|-----------|-------------|-----------|
| F1-C1      | 1.271 (9) | N4-C11      | 1.382 (4) |
| O1-C16     | 1.352 (4) | C9-C10      | 1.389 (5) |
| O1-C13     | 1.362 (4) | C10-C11     | 1.374 (5) |
| N1-N2      | 1.348 (4) | C13-C14     | 1.350 (5) |
| N1-C11     | 1.374 (4) | C14-C15     | 1.403 (5) |
| N2-C9      | 1.337 (5) | C15-C16     | 1.340 (6) |
| N3-C8      | 1.147 (5) |             |           |
| C16-O1-C13 | 106.2 (3) | C11-C10-C9  | 104.9 (3) |
| N2-N1-C11  | 113.0 (3) | C10-C11-N1  | 105.7 (3) |
| C9-N2-N1   | 103.2 (3) | C14-C13-O1  | 109.3 (3) |
| F3-C1-F2   | 111.0 (7) | C13-C14-C15 | 107.6 (3) |
| N3-C8-C9   | 179.1 (5) | C16-C15-C14 | 105.6 (3) |
| N2-C9-C10  | 113.1 (3) | C15-C16-O1  | 111.4 (3) |
|            |           |             |           |

All H atom were initially observed in a difference Fourier map and were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å and  $U_{iso}(H) = 1.22_{eq}(C)$ . The low  $U_{eq}$  value of atom C1 compared with its neighbours may be attributed to the three possibly disordered F atoms. The highest peak is located 1.27 Å from atoms C1 and F.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Nature Science Foundation of China (No. 20272043) and the Nature Science Foundation of Zhejiang Province (No. M203001).

### References

Bruker (2002). SMART, SAINT, SADABS, SHELXL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5232940.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.